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Abstract

The paper presents an analytical solution capable of predicting the effect of matrix cracking in ceramic matrix

composites (CMC) on damping. The cracking scenarios considered in the paper include through-the-thickness cracks

and cracks terminating at the layer interfaces. The increase in damping associated with matrix cracking is mostly due to

the frictional energy dissipation along the damaged fiber–matrix interfaces adjacent to the bridging cracks whose plane

of propagation intersects the fiber axis. Damping increases with a higher density of matrix cracks. The loss factor is

affected by the angle of the lamina relative to the direction of the applied load. The loss factor is also influenced by the

frequency and magnitude of local dynamic stresses. Examples of distributions of the local loss factor along the axis of a

CMC beam subject to pulsating loads of various frequencies are shown in the paper.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The purpose of the present paper is to elucidate the effect of matrix cracking in angle-ply ceramic matrix

composites (CMC) on the loss factor (damping) in these materials. Two cracking scenarios are considered,

including through-the-thickness cracks and the cracks limited to single layers and terminating at the layer

interface. In addition, the effects of the vibration frequency and the amplitude of local stresses on damping

are illustrated on the example of a CMC cantilever beam subject to axial fatigue loading.
As suggested by Wu and Erdogan (1993), cracks in composite laminates can grow within the layer until

they reach the interface. Subsequently, three possibilities have to be considered. The crack may be arrested,

in which case additional cracks that appear in other layers of the laminate are not necessarily collinear with

the former crack. The second option is delamination cracking that originates at the interface from the tip of

the initial crack. Finally, the crack may continue to grow throughout the thickness of the laminate, without

changing its orientation.
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Nomenclature

r applied stress acting in the x-direction (Eq. (3))
r1 stress acting in the 1-direction (Eq. (3))

r2 stress acting in the 2-direction (Eq. (3))

s12 in-plane shear stress in the 1–2 coordinate axes (Eq. (3))

Dr1 range of tensile stresses in the 1-direction (Eq. (6))

s interfacial shear stress (Eq. (6))

req stress acting in the 1-direction (Eq. (12))

r01 stress acting in the 1-direction in longitudinal layers (Eq. (18))
rh
x stress acting in the x-direction on the layer with the lamination angle (Eq. (18))

Dr range of applied tensile stresses (Eq. (22))

Dr01 range of tensile stresses acting in the x-direction in longitudinal layers (Eq. (22))
Drh

x range of tensile stresses acting in the x-direction in inclined layers (Eq. (22))
r01a amplitude of tensile stresses acting in the 1-direction in longitudinal layers (Eq. (25))

r0
1 maximum per-cycle stress in the x-direction in longitudinal layers (Eq. (26))

rx
1 maximum per-cycle stress in the x-direction in inclined layers (Eq. (26))

rx amplitude of dynamic stress applied to the beam (Eq. (29))
Dri range of dynamic stress acting in the ith layer of the beam (Eq. (32))
r0 static stress applied to the beam (Eq. (33))

r0i static stress acting in the ith layer of the beam (Eq. (33))
rðx;xÞ local stress in the beam dependent on the location and frequency of motion (Eq. (37))
Drðx;xÞ range of local stress in the beam (Eq. (38))
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In angle-ply CMC considered here the mode of cracking is determined by the laminate construction. In
particular, in balanced symmetric ½�h=h�k laminates cracks may originate along one of the material sym-
metry planes (see Fig. 1 that introduces coordinate systems employed in the subsequent analysis). If these

cracks are parallel to the fibers, they are called tunneling cracks, while the bridging cracks are perpendicular

or inclined relative to the fibers. In any case, the cracks almost immediately propagate through the

thickness of the corresponding layer.

In the case of ½�hm=0n=hm�k laminates, initial cracks may originate either in the longitudinal (0) layers as
bridging cracks or in the inclined (h) layers as tunneling cracks (Byrd and Birman, 2002). While the former
case is likely to lead to through the thickness cracking, the latter case may result in the saturation of the
cracks in the inclined layers followed by bridging cracking in the longitudinal layers or delamination. Based

on the observation for cross-ply CMC, it can be predicted that if tunneling cracks form first, they will reach
Fig. 1. Specially and generally orthotropic laminae and the coordinate systems used in the analysis.
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saturation in the inclined layers, prior to propagating into the longitudinal layers (Karandikar and Chou,

1993; Domergue et al., 1996).

The present paper deals with damping in ½�h=h�k and ½�hm=0n=hm�k laminates. The approach to the
evaluation of the increase in damping due to damage is suggested for the case of bridging matrix cracking.
The change in damping in the case of tunneling cracks was shown to be limited (Birman and Byrd, 2002)

and it is not analyzed here. It is worth mentioning here surveys dealing with damping in composite

materials that have been published by Bert (1980, 1991); Adams (1987) and Gibson (1992). However, it

should be noted that an analytical prediction of damping in damaged composite materials has not been

thoroughly investigated.

In addition to the general solution, the results obtained in the paper were used to predict the loss factor

of a CMC beam with bridging matrix cracks as a function of the local stresses. These stresses are affected by

the magnitude and frequency of the externally applied load. Therefore, both these parameters influence the
value of the local loss factor that varies along the beam axis. This phenomenon is illustrated on the example

of a CMC cantilevered beam subject to axial dynamic loading.
2. Analysis

2.1. Estimate of damping in a generally orthotropic lamina with bridging matrix cracks

Damping can be expressed in terms of the loss factor that is defined by
g ¼ Ud
2pU

ð1Þ
where Ud is the density of energy dissipated during the cycle of motion, while U is the maximum strain
energy density per cycle. If the structure includes several linear viscoelastic elements, the previous equation

can be modified as suggested by Ungar and Kerwin (1962):
g ¼
P

i giWiP
i Wi

ð2Þ
where Wi is the maximum strain energy in the ith element during the cycle, and gi is the loss factor of the
corresponding element.

The analysis of damping can be performed for either bridging or tunneling matrix cracks in the layers.

The loss factor of the ½�h=h�k laminate is equal to the loss factor of individual layers if the same crack
density is anticipated in all layers (this occurs if the load that caused cracking was uniformly distributed

through the thickness of the laminate). Based on the previous analysis (Birman and Byrd, 2002), it can be

predicted that the changes in damping in the case of tunneling cracking will be small. Accordingly, con-
sidering the fact that the loss factors of intact ceramics and CMC are very small (Pant and Gibson, 1996;

Yang et al., 1997; Lee, 1966), it is possible to assume that tunneling cracking will result in an insignificant

increase in damping. The situation is different if bridging matrix cracks develop in the layers. In this case,

the increase in damping is very considerable and it is mostly related to the interfacial fiber–matrix friction

along the slip regions adjacent to the plane of the crack. Therefore, the subject of the following discussion is

damping in an angle-ply lamina with bridging matrix cracks.

If a balanced symmetrically laminated CMC panel is subject to axial stresses r (for clarity, notation for
stresses is presented in nomenclature), the stresses in the principal material coordinate system 1–2 can be
calculated by the transformation equations:
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r1 ¼ r cos2 h

r2 ¼ r sin2 h

s12 ¼ r cos h sin h

ð3Þ
Subsequently, the strains in the principal material directions are available from
e1 ¼ a11r1 þ a12r2
e2 ¼ a12r1 þ a22r2
c12 ¼ a66s12

ð4Þ
where the compliance coefficients expressed in terms of the engineering constants of an orthotropic layer

(standard notation) are:
a11 ¼ 1=E1
a12 ¼ �m12=E1
a22 ¼ 1=E2
a66 ¼ 1=G12

ð5Þ
During the tensile part of the fatigue loading cycle, the stiffness of the layers with bridging cracks varies,

reflecting sliding of the fibers along the matrix (partial or full slip). Therefore, it is necessary to specify the

values of engineering constants in (5). This can be done following the approach suggested by Birman and

Byrd (2001). First, the average modulus of elasticity for the tensile part of the cycle is calculated following

the solution of Sorensen and Holmes (1996):
E1 ¼
s

s
EL

þ r
4s

Dr1
Ef

VmEm
VfEL

� �2
E1 ¼

VfEf
1� Vf ss

r Dr1

ð6Þ
where the first equation corresponds to a partial fiber–matrix slip, while the second equation should be used
in the case of a full fiber–matrix slip.

In (6), s is the interfacial shear stress, r is the fiber radius, s is the preexisting bridging matrix crack
spacing, Dr1 is the range of tensile stresses acting in the fiber (1) direction and EL is the longitudinal
modulus of the intact layer. The modulus and the volume fraction of the fibers are denoted by Ef and Vf ,
respectively. The corresponding constants of the matrix are Em and Vm. Note that it is necessary to operate
with the average per-cycle modulus of elasticity, rather than the instantaneous values, since in the latter case

reduced stiffnesses depend on time and the analysis is very complicated. The boundary between the partial

and full slip is defined as a function of the average per-cycle modulus. The former case occurs if
E1 >
VfEf
1� Vm

2
Em
EL
while the full slip corresponds to smaller values of the modulus. The range of tensile stresses Dr1 that
appears in (6) can easily be evaluated from the first equation (3), provided the range of applied stresses r
acting in the x-direction is prescribed.
Now, following Birman and Byrd (2001), it is assumed that the stiffness of the lamina in the 2-direction

remains unaffected by bridging matrix cracks that are perpendicular to the fibers since the crack opening

(width) is negligible compared to the crack spacing. Due to the same assumption, the ratio of the applied
strain in the 1-direction to the resulting strain in the 2-direction can be considered unaffected by cracks.
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These considerations imply that the modulus E2 and Poisson ratio m12 can be taken equal to those for the
intact material, i.e. E2 ¼ ET and m12 ¼ mLT. Accordingly, the second in-plane Poisson ratio can be calculated
as:
m21 ¼ mLT
ET
E1

ð7Þ
In addition, the in-plane shear modulus can be calculated from (Birman and Byrd, 2001)
G12 ¼
2GLT

1þ EL=E1
ð8Þ
Now it is possible to calculate the coefficients aij given by (5) that account for the presence of bridging
matrix cracks in the lamina. Note that these coefficients refer only to the tensile part of the motion cycle

when the cracks are open. Under compression, the cracks are assumed closed and E1 ¼ EL. If bridging
cracks are not perpendicular to the fibers, the present approach to the evaluation of the compliance

coefficients may be inaccurate and aij have to be determined from the finite element analysis.
The frictional energy dissipation density per second in the case where the stress ratio during a fatigue

cycle R ¼ rmin=rmaxP 0 was derived by Cho et al. (1991):
Wfric;t ¼
frðDr1Þ3

12sEfs
VmEm
VfEL

� �2
ð9Þ
where f is a vibration frequency. Eq. (9) and the subsequent solution correspond to the case of a partial
slip. The corresponding solution for a full slip can be based on the counterpart of (9) available from the

paper of Sorensen and Holmes (1996). This solution is omitted here for brevity.

The density of the energy dissipated per cycle as a result on the interfacial friction can be evaluated by

dividing the expression in (9) by the frequency and substituting the appropriate range of stresses. For

example, if the applied stress ratio is equal to zero, as is the case if rðxÞ ¼ rð1þ sinxtÞ, the range of stresses
in the fiber direction (1-direction) in the inclined layers is
Dr1 ¼ 2r1 ¼ 2r cos2 h ð10Þ

Accordingly, the density of energy dissipated per cycle becomes
Udðr1Þ ¼
2rðr cos2 hÞ3

3sEfs
VmEm
VfEL

� �2
ð11Þ
It is assumed that the stress component r2 acting perpendicular to the fibers, in the plane of the cracks,
does not affect the interfacial friction. However, the in-plane shear stress along the damaged section of the

interface changes a relative displacement between the fiber and matrix resulting in additional interfacial

friction. While the exact solution of this problem is outside the scope of the paper, an estimate of the effect

of shear stresses can be obtained by introducing an equivalent axial stress acting in the fiber direction. The

magnitude of this stress can be obtained from the requirement that the strain energy release rate associated

with the equivalent stress should equal that rate for the actual stress state. The substitution of these energy
release rates expressed in terms of the stress intensity factors according to (Kanninen and Popelar, 1985)

into the above-mentioned requirement yields
E0bK2I ðr1Þ þ K2IIðs12Þc ¼ E0K2I ðreqÞ ð12Þ
where E0 is the plain strain modulus and the stress intensity factors are given by fKIðrÞ;KIIðsÞg ¼
fr; sg ffiffiffiffiffiffi

pa
p
, a being a half-length of the crack. Note that (12) involves the modulus affected by the range of

axial stresses. However, an estimate of the effect of in-plane shear stress can be obtained by assumption that
a difference in the moduli in the left and right sides of (12) is negligible. Accordingly,
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req ¼ r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s12

r1

� �2s
ð13Þ
Now the density of the interfacial energy dissipation (11) can be modified to incorporate the effect of the

shear stress:
Udðr1; s12Þ ¼
2rðKr cos2 hÞ3

3sEfs
VmEm
VfEL

� �2
ð14Þ
where
K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h

p
ð15Þ
The solution given by (13) and (14) can be recommended only if the shear stress and its effect are rela-

tively small. As follows from the previous research (Byrd and Birman, 2002), loading applied at angles

larger than 45� produces tunneling, rather than bridging, cracks. Therefore, the present analysis can be
recommended if both the initial load that caused damage and the subsequent fatigue loads are oriented at

an angle equal or smaller than 45� relative to the fiber direction.
The maximum strain energy density is available from
U ¼ 1
2

r21m
E1

�
þ r22m

E2
þ s212m

G12

�
¼ r2max
2Ex

ð16Þ
where fr1m; r2m; s12mg represent the combination of simultaneously applied stresses in the 1–2 coordinate
system that result in the maximum strain energy density during the cycle of motion, E1 ¼ E1ðr1Þ,
G12 ¼ G12ðr1Þ, E2 ¼ ET (strictly speaking, this is correct only if the cracks are perpendicular to the fibers),
and rmax is the maximum tensile stress during the cycle acting in the x-direction. The modulus of the lamina
in the x-direction, Ex, can easily be evaluated as a function of the moduli in the lamina principal directions.
Obviously, this modulus is a function of the range of tensile stresses.

The loss factor calculated by assumption that the only source of increased damping is the interfacial

friction can be now evaluated. Note that this conservative approach is based on the assumed negligible

changes in damping due to reduced stiffness associated with damage, local stress concentrations at the tips

of the cracks, thermomechanical coupling, etc. Accordingly, the loss factor of a layer that coincides in the

case of ½�h=h�k laminates subject to uniform through the thickness loads with the loss factor of the laminate
is given by
g0 ¼ g þ Udðr1; s12Þ
2pU

ð17Þ
where g is the loss factor of the intact lamina calculated as explained in Appendix A, U is given by (16), and
Ud is substituted from (14).
2.2. Damping in ½�hm=0n=hm�k angle-ply CMC

This type of angle-ply laminates is often used in industry because of enhanced stiffness in the x-direction.
The initial mode of damage in such laminates is in the form of bridging cracks in the longitudinal layers or

tunneling cracks in the inclined layers. As was shown by Byrd and Birman (2002), bridging cracks in the

inclined layers are unlikely to constitute the initial mode of damage.

Two cases considered in the present study include damping in CMC laminates with bridging cracks in
longitudinal layers and tunneling cracks in inclined layers and damping in laminates with through-the-
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thickness matrix cracks originating in longitudinal layers. The former case is anticipated if initial cracking

occurred in inclined layers, while the latter case can occur if cracks originated in longitudinal layers.
2.2.1. Damping in angle-ply ½�hm=0n=hm�k laminates with tunneling cracks in transverse layers and bridging
cracks in longitudinal layers

While tunneling cracks reduce the stiffness of the transverse layers, it has been found that this change

does not result in a significant increase in damping (Birman and Byrd, 2002). Accordingly, the only

noticeable effect of the cracks in inclined layers on damping of the laminate can be attributed to a redis-
tribution of the laminate stiffness and the effect on the stresses in the longitudinal layers. If a balanced

½�hm=0n=hm�k laminate is subject to uniaxial loading, the applied stress r acting in the x-direction can be
related to the stresses in the layers by the following approach.

The static equilibrium dictates that
r ¼ Hnr
0
1 þ Hmrh

x ð18Þ
where Hn ¼ n=ð2mþ nÞ and Hm ¼ 2m=ð2mþ nÞ are the relative thicknesses of the longitudinal and inclined
layers. The stresses acting in the x-direction in the longitudinal and inclined layers are denoted by r01 and rh

x ,

respectively. Note that the stress r01 is acting in the principal material direction of the corresponding layer.
The axial strains in the x-direction are assumed equal in all layers as is the case where the load is uniform

through the thickness of the laminate:
r
Ex

¼ r01
E1

¼ rh
x

Eh
x

ð19Þ
where the Poisson effect is neglected (otherwise, we have to employ the corresponding reduced stiffnesses),

and Ex, E1 and Eh
x denote the stiffness of the laminate in the x-direction, the stiffness of longitudinal layers in

the 1-direction (as in the previous section), and the stiffness of the inclined layers in the x-direction, res-
pectively.

The engineering constants of the inclined layers can be determined following the approach suggested by

Han and Hahn (1989) for the stiffness evaluation in a cross-ply material with tunneling cracks in the

transverse layers. According to experimental observations (Karandikar and Chou, 1993; Domergue et al.,

1996), tunneling cracks reach saturation in the transverse layers, prior to penetrating into adjacent layers (in

our case, into longitudinal layers). In the present investigation, we consider the case where the cracks first

developed in the inclined layers and the bridging cracks in the longitudinal layers appeared only at a later
phase of loading. Therefore, it is possible to adopt the solution of Han and Hahn (1989) for the analysis of

a laminate with tunneling cracks in transverse layers and intact longitudinal layers. In this case, it is possible

to use the properties of the intact longitudinal layers in the principal material directions of the inclined

layers. The fact that the longitudinal layers are not perpendicular to the inclined layers does not alter the

analysis. Hence, if the tunneling crack spacing in the inclined layers is prescribed, one can evaluate the

engineering constants of the laminate in the principal material directions of the inclined layers, namely,

Ehlam
1 , Ehlam

2 , mhlam
12 , mhlam

21 , G
hlam
12 . In these notations, ‘‘lam’’ indicates that the corresponding engineering

constants are calculated for the composite material, including both longitudinal and inclined layers, while
implies that the coordinate system refers to the principal material directions of the inclined layers. Note that

the stiffness in the fiber direction of the inclined layers is not affected by tunneling cracks. Therefore, Ehlam
1

and mhlam
21 correspond to the values for the intact material. Accordingly, instead of using the approach

employed by Han and Hahn (1989) for the calculation of the Poisson ratio mhlam
12 , it is easier to calculate

mhlam
12 ¼ mhlam

21 Ehlam
1 =Ehlam

2 .
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The engineering constants of the inclined layers with tunneling cracks can now be found from the static

equilibrium equations. For example, the equilibrium of stresses in the 2-direction of the inclined layers

yields
rh
2 ¼ Ehlam

2 eh
2 ¼ HnE

hlong
2 eh

2 þ HmEhincl
2 eh

2 ð20Þ

where ‘‘long’’ and ‘‘incl’’ stand for the longitudinal and inclined layers, respectively. Canceling the strain in

(20) and using the known value of the stiffness for intact longitudinal layers, Ehlong
2 , yields the value of Ehincl

2 .

The shear modulus of the inclined layers can be obtained in a similar manner by considering in-plane shear

stresses. Subsequently, the Poisson ratio for the inclined layers is available from
mhincl
12 ¼ mhincl

21

Ehincl
1

Ehincl
2

ð21Þ
where the terms in the numerator in the right side correspond to the values available for the intact material.

Now it is possible to consider the stresses and the stiffness of the longitudinal layers with bridging matrix

cracks. The modulus of elasticity in the x-direction (1-direction for the longitudinal layers) and the Poisson
ratio affected by bridging cracks are available from (6) and (7). However, it is necessary to specify the range

of the stresses in the longitudinal layers. This can be done using (18) and (19) to evaluate r01. The modulus
Eh
x in (19) can be evaluated using the engineering constants for cracked inclined layers. Therefore, the
problem of the evaluation of the stress in the longitudinal layers can be formulated as (partial fiber–matrix

slip)
Dr ¼ Hn Dr01 þ Hm Drh
x ð22Þ

Dr01
1

EL

"
þ r
4ss

Dr01
Ef

VmEm
VfEL

� �2#
¼ Drh

x

Eh
x

ð23Þ
where Dr is the range of the applied tensile stresses, and Dr01 and Drh
x are the ranges of tensile stresses for

the longitudinal and inclined layers in the x-direction, respectively.
Given the bridging matrix crack spacing and the interfacial shear stress, the stress range in the longi-

tudinal layers Dr01 can be calculated from (22) and (23) as a function of the applied stress range Dr. The
stress range Drh

x is also evaluated from this set of equations.

The loss factor in the laminate is now available from the counterpart of (17):
g00 ¼ glam þ Udlong
2pUlam

ð24Þ
In (24), glam is the loss factor for the intact laminate. The energy dissipation density associated with the
interfacial friction in the longitudinal layers is shown below for a positive stress ratio R by assumption of
partial slip along the fiber–matrix interface:
Udlong ¼
2rðr01aÞ

3

3ssEf

VmEm
VfEL

� �2 n
2mþ n

ð25Þ
where the stress r01a is the amplitude of the tensile stress acting in these layers that is available from Dr01.
The maximum per-cycle strain energy density is
Ulam ¼ 1
2

ðr0
1Þ
2

E0x
Hn

"
þ ðr0

xÞ
2

Eh
x

Hm

#
ð26Þ
where r0
1 and r0

x are the maximum per-cycle stresses in the x-direction acting in the longitudinal and inclined
layers, respectively.
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The first term in the right side of (26) reflects the strain energy density contributed by the longitudinal

layers. It should be remembered that the modulus E0x depends on the stress range acting in these layers, as is
reflected in Eq. (6).

2.2.2. Damping in angle-ply ½�hm=0n=hm�k laminates with through the thickness bridging cracks
In this case, the loss factor can be obtained from the modified equation (24):
g000 ¼ glam þ Udlong þ Udincl
2pUlam

ð27Þ
The density of energy dissipation in the longitudinal layers, Udlong, is obtained from (25), although the
maximum per-cycle stress is calculated using a different procedure outlined below. The density of energy

dissipation in the inclined layers, Udincl, is obtained accounting for the mixed mode of fracture, i.e. both the
stresses in the fiber direction and the in-plane shear stresses.

The maximum strain energy density is available from (26). The moduli in this equation can be deter-

mined from the solution of Eq. (22) and a version of (23) where the modulus Eh
x depends on the stresses

acting in the inclined layers. The following procedure can be applied to obtain a closed-form solution.

First, one has to assume the stress range Drh
x in the inclined layers. Subsequently, the value of the average

per-cycle modulus Eh
1 can be determined from (6) using the appropriate values of engineering constants.

Other engineering constants of the inclined layers are immediately available using the approach outlined in

the previous section and in the paper of Birman and Byrd (2001). Subsequently, the transformation

equation is employed to determine the modulus Eh
x . Now (22) and (23) contain only unknown stress ranges

Dr and Dr01 that can be immediately determined. This accomplishes the analysis since the energy density
terms in (27) can now be calculated.
3. On the effect of the vibration frequency on damping

The loss factors evaluated above are not explicitly affected by the frequency of motion. However, the
frequency affects the range of stresses applied to the structure in virtually every problem. As an example, the

problem of an angle-ply symmetrically laminated cantilever CMC unit-width beam subjected to an axial

periodic stress ðr0 þ rx sinxtÞ applied at the free end is considered. It is assumed that the combination of
the amplitude and frequency of the stress are such that dynamic instability does not occur. The combi-

nation of the applied static and dynamic stresses is such that the stress ratio within each layer during the

cycle of motion is positive. The layers are assumed to possess bridging cracks that emerged prior to the

application of the stress. In addition, it is assumed that the applied time-dependent stress does not generate

additional cracks in the layers of the beam.
The equation of longitudinal vibrations of the beam is
A
o2u
ox2

¼ q
o2u
ot2

ð28Þ
where A ¼
P

i Eihi is the extensional stiffness obtained as a sum of the products of the dynamic modulus of
elasticity in the beam axial direction and the thickness of the corresponding layer (i is the layer number),
and q is a mass density of the material multiplied by the thickness of the beam.
The solution must satisfy the dynamic boundary conditions:
uðx ¼ 0Þ ¼ 0

A
ouðx ¼ aÞ

ox
¼ rxh sinxt

ð29Þ
where a is the length of the beam and h is its thickness.
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The solution of this problem is
u ¼ rxhc
Ax cos xa

c

sin
xx
c
sinxt ð30Þ
where c ¼
ffiffiffiffiffiffiffiffiffi
A=q

p
.

The dynamic stress component acting in the fiber direction in the ith layer of the beam can now be
determined:
ri ¼
Ei

A

cos xx
c

cos xa
c

rxh sinxt cos2 hi ð31Þ
where hi is the angle of lamination of the layer.

Obviously, the range of the dynamic stress acting in the fiber direction in the ith layer is
Dri ¼ 2
Ei

A

cos xx
c

cos xa
c

����
����rxh cos2 hi ð32Þ
The dynamic stress is superimposed on the static stress in the layer acting along the fibers. This stress is

given by
r0i ¼ r0
E0i h
A
cos2 h ð33Þ
where E0i is the static modulus of the corresponding layer in the beam axial direction.
In this paper, the per-cycle stress ratio in each layer is assumed positive, RP 0, i.e. r0i P Dri=2. Note that

the analysis is performed by assumption that the fibers experience partial slip. Otherwise, the equations for

the moduli and the density of energy dissipation employed below have to be modified.

The difficulty in using the solution shown above is apparent. The stresses in the layers have to be

evaluated as functions of the layer moduli. However, these moduli are dependent on the stresses. Therefore,
the solution has to be iterative, i.e. the initial moduli values may be assumed for the intact material, the

stress values evaluated using these moduli, the moduli updated using the previously calculated stresses, etc.

Once the moduli of the layers and the stresses in these layers have been evaluated, the local density of the

interfacial energy dissipation in a generally orthotropic layer is available from a modified equation (14):
Ui
d ¼
2rðKrx cos

2 hiÞ3

3sEfs
VmEm
VfEL

� �2 Eih
A

� �3 cos xx
c

cos xa
c

����
����
3

ð34Þ
Obviously, if the layer is oriented along the beam axis, h ¼ 0 and K ¼ 1.
The local loss factor that depends both on the location as well as the frequency of motion is obtained as
gðx;xÞ ¼ gbeam þ
P

i U
i
d

2pUbeam
ð35Þ
where gbeam and Ubeam denote the loss factor of the intact beam material and the maximum per-cycle strain
energy density of the beam material, respectively. The loss factor of the intact beam material can be found

as shown in Appendix A. Note that this factor is independent of the magnitude or frequency of the axial

stress. It is also independent of the location along the beam. The maximum per-cycle value of the strain

energy density has already been determined (Eq. (16)). It is necessary to emphasize that the moduli E1 and
G12 in (16) are affected by the stress range. This implies that Ubeam obtained by (16) is a function of both the
axial coordinate as well as the frequency.

The average loss factor of the beam is independent of the x-coordinate, but it is still affected by the
frequency. This factor can be obtained from
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gðxÞ ¼ gbeam þ
P

i

R a
0
Ui
d dx

2p
R a
0
Ubeam dx

ð36Þ
A simple illustration of the effects of the frequency and coordinate on the loss factor is the case where the

beam is composed of just one layer with the fibers oriented along the beam axis. In this case, the stresses
acting along the beam axis are
rðx;xÞ ¼ r0 þ rx
cos xx

c

cos xa
c

sinxt ð37Þ
The range of the stresses is, of course,
Drðx;xÞ ¼ 2rx
cos xx

c

cos xa
c

����
���� ð38Þ
This range can be used in (6) to evaluate a distribution of the modulus E1 ¼ Eðx;xÞ. The loss factor
glayerðx;xÞ is available from (17) using the value of the lamination angle equal to zero:
glayerðx;xÞ ¼ g þ rE1ðDrÞ
6psEf

rx

s

cos xx
c

cos xa
c

����
����
3 VmEm

VfEL

� �2
ð39Þ
Note that the loss factor is a nonlinear function of both the dynamic stress amplitude and the frequency.

Introducing a nondimensional frequency of vibrations defined as a ratio of the driving frequency to the

fundamental frequency of longitudinal vibrations of the undamaged layer-beam, and a nondimensional

axial coordinate, i.e.
w ¼ x
pc
2a


 �
�xx ¼ x

a

ð40Þ
the local loss factor can be represented as
glayerðx;xÞ ¼ g þ rE1ðDrÞ
6psEf

rx

s

cos pw�xx
2

cos pw
2

�����
�����
3

VmEm
VfEL

� �2
ð41Þ
The local modulus of elasticity in (39) and (41) is given by
E1ðDrÞ ¼ s

s
EL

þ r
2s

rx

Ef

cos pw�xx
2

cos pw
2

�����
����� VmEm

VfEL

� �2 ð42Þ
4. Numerical analysis

The analysis of damping is presented here for ½�h=h�k angle-ply CMC laminates. Calculations were
performed for a typical SiC/CAS material with the following properties (Domergue et al., 1995): Ef ¼ 200
GPa, Em ¼ 97 GPa, Vf ¼ 0:35, r ¼ 8� 10�6 m, mf ¼ mm ¼ 0:2 (Poisson ratios). Based on this data, EL ¼ 133
GPa, ET ¼ 118 GPa, and GLT ¼ 50 GPa. Two values of the bridging matrix crack spacing considered in the
following examples are s ¼ 0:125 mm (saturation spacing, according to experiments), and s ¼ 0:250 mm.
The loss factors of the fiber and matrix materials were estimated based on experimental data (Pant and

Gibson, 1996; Yang et al., 1997; Lee, 1966) as gf ¼ 0:002, gm ¼ 0:001.
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Based on the previous study (Byrd and Birman, 2002), it was found that the critical value of the angle of

lamination is equal to 45�. In an angle-ply laminate, bridging matrix cracks develop if the lamination angle
is smaller than the critical value, while tunneling cracks appear in the layers at large lamination angles.

Accordingly, a sharp increase in damping attributed to a fiber–matrix friction in the case of bridging matrix
cracks is observed only if h < 45�, while at larger angles the increase in damping is small and often it cannot
be reliably detected. Therefore, numerical results are shown in the following figures only for the former

case.

In the following examples, the interfacial shear stress was chosen equal to 5 MPa. This choice is related

to the experimentally observed rapid decrease in this stress during the first fatigue cycles that is associated

with a decrease in fiber roughness (Jerro et al., 1991; Rouby and Reynaud, 1993; Evans et al., 1995). It has

been reported that the decrease to the threshold value occurs during the first 10–1000 cycles of motion,

dependent on the material (Evans et al., 1998; Vanwijgenhoven et al., 1999). In the material considered
here, the lowest measured interfacial shear stress is about 5 MPa, and accordingly, this value was used in

the vibration analysis.

Variations in the loss factor of the intact lamina subject to axial loading are shown in Fig. 2. The changes

in damping with the lamination angle are relatively small. Considering the order of magnitude of the loss

factor, these variations are relatively insignificant in practical applications.

Both the stiffness and damping of generally orthotropic laminae with bridging matrix cracks are con-

sidered in Figs. 3–5. As follows from Fig. 3, the stiffness of a lamina subject to axial loading increases with

the lamination angle. This is predictable since a larger lamination angle results in a smaller range of axial
tensile stresses acting in the fiber direction. Accordingly, an average degradation of the stiffness available

from Eq. (6) is less pronounced, as compared to the case where the angle of lamination is small or equal to

zero. A higher density of cracks corresponds to a lower stiffness of the material. As follows from Fig. 3, a

larger amplitude of the applied stress predictably results in a more significant reduction in the modulus of

elasticity.

The loss factor of a generally orthotropic lamina is shown as a function of the lamination angle in Figs. 4

and 5. In these figures, the loss factor is much higher than the factor obtained for the intact lamina (Fig. 2).

The results shown in Figs. 4 and 5 account for the effect of in-plane shear stresses in the lamina coordinate
axes. The comparison between the loss factor evaluated neglecting these stresses and the factor accounting

for them shown in Fig. 4 confirm that neglecting this effect results in a significant error that increases with

the angle of lamination. As follows from the results shown in Figs. 4 and 5, the density of matrix cracks has

a very significant effect on damping.
Fig. 2. Variations of the loss factor in an intact lamina subject to axial loading as a function of the lamination angle.



Fig. 3. Effect of the lamination angle on the longitudinal modulus in the fiber direction for a generally orthotropic lamina with bridging

matrix cracks, R ¼ 0, s ¼ 5 MPa. The stress amplitudes are r ¼ 40 MPa and r ¼ 100 MPa.
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Fig. 4. Loss factor of a CMC lamina with bridging matrix cracks as a function of the lamination angle and crack spacing. The stress

amplitude r ¼ 40 MPa, R ¼ 0, s ¼ 5 MPa.

Fig. 5. Loss factor of a CMC lamina with bridging matrix cracks as a function of the lamination angle and crack spacing. The stress

amplitude r ¼ 100 MPa, R ¼ 0, s ¼ 5 MPa.
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The effects of vibration frequency and the location of the analyzed cross-section along the specially

orthotropic cantilever CMC beam subject to a periodic axial loading was also considered for the same SiC/

CAS material. The fibers were oriented along the beam axis. The load includes a constant component, so

that the stress ratio remained positive at each point of the beam. The distributions of the per-cycle average
modulus of elasticity and the stress amplitudes along the beam axis are shown in Figs. 6 and 7, respectively

(ratio x=a ¼ 0 corresponds to the clamped end, while x=a ¼ 1 corresponds to the free end subject to
dynamic loading). As follows from Fig. 6, the stiffness varies along the beam axis. At the point where the

dynamic stress and strain are equal to zero corresponding to x ¼ 2=3 (for w ¼ 3=2), the modulus is equal to
that of the intact material. However, other cross-sections of the beam are subject to tensile stresses and,

accordingly, the average per-cycle modulus in these cross-sections is below the intact value. Note that in the

case where the frequency of the applied load is lower than the fundamental frequency and there are no

points corresponding to zero dynamic stress along the beam axis, the stiffness variations are smooth,
reflecting a gradual variation of stress amplitudes between the clamped and free ends of the beam.
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Fig. 6. Average per-cycle modulus of elasticity distribution along the axis of a specially orthotropic CMC cantilever beam subject to

axial pulsating loading. Crack spacing is equal to 0.125 mm.

Fig. 7. Dynamic stress amplitude in a specially orthotropic CMC beam with uniform bridging matrix cracks along the axis. The beam

is subject to axial pulsating loading. Crack spacing is equal to 0.125 mm.
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Fig. 8. Distribution of the local loss factor along the axis of a cantilever specially orthotropic CMC beam subjected to axial pulsating

loading. Crack spacing is equal to 0.125 mm.
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Finally, the distribution of the loss factor along the axis of the beam is illustrated in Fig. 8. It is evident

from this figure, that in the presence of bridging cracks the concept of a single damping coefficient capable

of characterizing the material of the structure becomes misleading. Rather, it is necessary to reflect local

damping in analytical or numerical solutions. Such damping is dependent on the distribution of stresses as

well as on the frequency of motion. Note that the loss factor of the material at the point where the dynamic

stress is equal to zero approaches the value for the intact material that is very small (the corresponding
value in Fig. 8 is so close to zero in the scale used in this figure that the impression may be created that

damping ‘‘disappears’’ which is obviously wrong).
5. Conclusions

The study presented in this paper resulted in the following conclusions.

1. The per-cycle average longitudinal modulus of elasticity of a CMC lamina with bridging matrix cracks

that is subject to tensile fatigue loading is significantly reduced compared to that of the intact lamina.

This reduction becomes particularly noticeable if the cracks reach saturation.

2. The interfacial friction is responsible for an abrupt increase in damping associated with formation of
bridging matrix cracks.

3. The loss factor of a generally orthotropic lamina should be evaluated accounting for the contribution of

dynamic in-plane shear stresses to the slip between the fibers and matrix. This additional slip results in

higher energy dissipation and a larger loss factor.

4. Higher applied dynamic stress amplitude results in a dramatic increase in damping as a result of a non-

linear relationship between the tensile stress range and the loss factor.

5. The loss factor of a CMC component with bridging matrix cracks is affected by the frequency of motion

and by the location. The latter effect is due to the stresses being the functions of coordinates.
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Appendix A. The loss factors of a generally orthotropic intact CMC lamina an angle-ply intact CMC laminate

The loss factor is obtained here for a generally orthotropic lamina subjected to a combination of axial

and in-plane shear stresses acting in the principal material directions.

The fiber and matrix strain energy densities due to the stress r1 are:
U 0
f ¼ 1

2
Vfr1fe1 ¼ 1

2
VfEfe21

U 0
m ¼ 1

2
Vmr1me1 ¼ 1

2
VmEme21

ðA:1Þ
where the strains in the 1-direction in the fibers and matrix are equal.

The fiber and matrix strain energy densities due to the stress r2 are:
U 00
f ¼
1

2
Vfr2fe2f ¼

1

2
VfEf2e22f

U 00
m ¼ 1
2
Vmr2me2m ¼ 1

2
VmEme22m

ðA:2Þ
where Ef2 is a transverse modulus of the fiber material that is assumed here equal to the modulus in the
1-direction (isotropic fibers).

According to the energy approach employed by Gibson (1994), the transverse strains in the fibers and in

the matrix can be found as
e2f ¼ a2e2

e2m ¼ b2e2
ðA:3Þ
where the composite strain is e2 ¼ r2=ET, i.e. a ratio of the transverse stress in the layer to its transverse
modulus of elasticity. The values of coefficients in (A.3) can be found from
a2Vf þ b2Vm ¼ 1

ET ¼ a22Ef2Vf þ b22EmVm
ðA:4Þ
The fiber and matrix strain energy densities due to the stress s12 are:
U s
f ¼ 1

2
Vfs12fc12f ¼ 1

2
VfGfc212f

U s
m ¼ 1

2
Vms12mc12m ¼ 1

2
VmGmc212m

ðA:5Þ
where Gf and Gm are the shear moduli of the fibers and matrix.
The shear strains in the fibers and matrix are found following the method applied above to the transverse

strains:
c12f ¼ c2c12

c12m ¼ d2c12
ðA:6Þ
where c12 ¼ s12=G12 and
c2Vf þ d2Vm ¼ 1

GLT ¼ c22GfVf þ d22GmVm
ðA:7Þ
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The total fiber and matrix strain energy densities can be calculated as
Uf ¼
Vf
2
½Efðe21 þ a22e

2
2Þ þ Gfc22c

2
12�

Um ¼ Vm
2
½Emðe21 þ b22e

2
2Þ þ Gmd22c

2
12�

ðA:8Þ
Now given the loss factors of the fiber and matrix materials, i.e. gf and gm, and using the total composite
strain energy density equal to the sum of the contributions of the fibers and matrix, we obtain the loss factor

of the intact generally orthotropic CMC lamina as
g ¼ gfUf þ gmUm
Uf þ Um

ðA:9Þ
If an angle-ply CMC laminate subjected to applied stress rx consists of M layers, (A.9) should be gene-

ralized accordingly:
g ¼
P

i gfiUfi þ
P

i gmiUmiP
i Uf i þ

P
i Umi

ðA:10Þ
where summation is carried out over the index i that varies from 1 to M. Notably, (A.10) enables us to
account for a possibility of using the layers composed of different materials. The stress applied to each layer

can be expressed in terms of the applied laminate stress through the mechanics of materials approach. It is

emphasized that the loss factor of an intact lamina or laminate subject to an axial stress is independent of
the frequency or magnitude of the stress, if it is evaluated by this method. This is because all strains in the

expressions (A.8) can be expressed in terms of the applied stress that cancels out in (A.9) or (A.10).
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